
The OpenWrt embedded

development framework

Florian Fainelli - florian@openwrt.org

January 22, 2008

Abstract

One of the biggest challenges to getting started with embedded

devices is that you cannot just install a copy of Linux and expect to

be able to compile a firmware. Even if you did remember to install

a compiler and every development tool offered, you still would not

have the basic set of tools needed to produce a firmware image. The

embedded device represents an entirely new hardware platform, so in

a process called cross compiling you need to produce a new compiler

capable of generating code for your embedded platform, and then use

it to compile a basic Linux distribution to run on your device.

The process of creating a cross compiler can be tricky and in many

cases when you are dealing with embedded devices you will be pro-

vided with a binary copy of a compiler and basic libraries rather than

instructions for creating your own. Likewise, it is also common to be

provided with a patched copy of the Linux kernel from the board or

chip vendor, but this is also dated and it can be difficult to spot ex-

actly what has been modified to make the kernel run on the embedded

platform.

OpenWrt has different approach to building a firmware; down-

loading, patching and compiling everything from scratch, including

the cross compiler. OpenWrt does not contain any executables and

only very few sources, it is an automated system for downloading the

sources, patching them to work with the given platform and compil-

ing them correctly for that platform. What this means is that just by

changing the templates, you can change any step in the process.

1

Contents

1 Design 1

1.1 Directory structure . 1

1.2 Packages and external repositories 1

1.3 Toolchain . 2

1.4 Software architecture . 3

1.5 System and package configuration 3

2 Developing with OpenWrt 4

2.1 Creating packages . 4

2.1.1 Package source download 4

2.1.2 Using another package manager 5

2.2 Creating kernel modules packages 5

2.3 Adding support for a new target 6

2.3.1 Using quilt . 6

2.3.2 Building an external kernel tree 7

3 Deploying OpenWrt 7

3.1 Supported root filesystems . 7

3.2 The Image builder . 7

3.3 The SDK . 8

– OpenWrt

1 Design

1.1 Directory structure

There are four key directories in the base:

• tools

• toolchain

• package

• target

tools and toolchain refer to common tools which will be used to build
the firmware image, the compiler, and the C library. The result of this
is three new directories, build_dir/host, which is a temporary directory
for building the target independent tools, build_dir/toolchain-<arch> *
which is used for building the toolchain for a specific architecture, and
staging_dir/toolchain-<arch> * where the resulting toolchain is installed.
You will not need to do anything with the toolchain directory unless you in-
tend to add a new version of one of the components above.

• build_dir/host

• build_dir/toolchain-<arch> *

1.2 Packages and external repositories

package is for exactly that – packages. In an OpenWrt firmware, almost
everything is an .ipk, a software package which can be added to the firmware
to provide new features or removed to save space. Note that packages are also
maintained outside of the main trunk and can be obtained from subversion
using the package feeds system:

$./scripts/feeds update

Those packages can be used to extend the functionality of the build system
and need to be symlinked into the main trunk. Once you do that, the pack-
ages will show up in the menu for configuration. From kamikaze you would
do something like this:

1

1.3 Toolchain – OpenWrt

$./scripts/feeds search nmap

Search results in feed ’packages’:

nmap Network exploration and/or security auditing utility

$./scripts/feeds install nmap

To include all packages, issue the following command:

$ make package/symlinks

target refers to the embedded platform, this contains items which are spe-
cific to a specific embedded platform. Of particular interest here is the
”target/linux” directory which is broken down by platform <arch> and
contains the patches to the kernel, profile config, for a particular platform.
There’s also the ”target/image” directory which describes how to package a
firmware for a specific platform.

Both the target and package steps will use the directory ”build_dir/<arch> ”
as a temporary directory for compiling. Additionally, anything downloaded
by the toolchain, target or package steps will be placed in the ”dl” directory.

• build_dir/<arch>

• dl

1.3 Toolchain

OpenWrt automates the toolchain creation for your particular architecture
by passing the right arguments to the compiler during the cross-compilation
process and using patches known to be working for your target architecture.

It also allows you to switch between different combinations of gcc, binutils,
kernel headers and uClibc so that you can easily check regressions and pro-
grams compilation. You can even customize the compiler flags passed to your
cross-compiler so you can test optimizations features of your cross-compiler
or different locations for your cross-compiled libraries.

If any of the toolchain component is not present adding a new version is easy
and can be easily done by adding an entry in the toolchain/Config.in and
creating a subdirectory for it to include specific patches if any.

2

1.4 Software architecture – OpenWrt

1.4 Software architecture

OpenWrt uses the common embedded Linux tools such as uClibc, busybox,
shell interpreter and provides a hardware abstraction layer and package man-
ager. Here is the software stack that OpenWrt uses:

Every architecture uses a different Linux kernel allowing the user-space en-
vironnment to be shared and consistent acrross devices. Therefore you only
need to recompile the uClibc and packages to match your target architecture
to get the same programs running on a totally different embedded device.

1.5 System and package configuration

UCI which stands for Unified Configuration Interface is a C library which
provides configuration context for user space and system configuration and
management. UCI was adopted with the extent of OpenWrt to other devices
which did not have the NVRAM to store their settings into a separate flash
partition.

Since UCI is a C library, it can be easily integrated into an existing user-space
application or to develop a configuration storage that is OpenWrt compatible
for your new application.

Further developments for UCI include a web interface that uses UCI as a
configuration file format as well as SNMP plugins to easily change the con-
figuration and take actions on the embedded device.

For instance adding a new configuration file is as simple as creating a new
file in /etc/config/package which should contain the following lines:

config <type> ["<name>"] # Section

option <name> "<value>" # Option

3

– OpenWrt

Later on, the system scripts and the UCI library allows you to parse this
configuration context from either an init script or directly an user-space pro-
gram.

2 Developing with OpenWrt

Developing with OpenWrt is easy and allows you to be really flexible with
kernel, C library and user-space programs development.

2.1 Creating packages

One of the things that we’ve attempted to do with OpenWrt’s template
system is make it incredibly easy to port software to OpenWrt. If you look
at a typical package directory in OpenWrt you’ll find two things:

• package/<name> /Makefile

• package/<name> /patches

• package/<name> /files

The patches directory is optional and typically contains bug fixes or opti-
mizations to reduce the size of the executable. The package makefile is the
important item, provides the steps actually needed to download and compile
the package.

The files directory is also optional and typically contains package specific
startup scripts or default configuration files that can be used out of the box
with OpenWrt.

After you have created your package/<name> /Makefile, the new package
will automatically show in the menu the next time you run ”make menuconfig”
and if selected will be built automatically the next time ”make” is run.

2.1.1 Package source download

One of the cool things with OpenWrt is that it supports different fetching
methods, allowing you to retrieve the source of a package from various fetch-
ing methods such as:

4

2.2 Creating kernel modules packages – OpenWrt

• GIT

• Subversion

• CVS

• HTTP

• local source

For instance, if you wish to checkout a particular revision of a package us-
ing Subversion, just define the following download method in your package
Makefile:

PKG_VER:=963

PKG_BRANCH:=batman-adv-userspace

PKG_VERSION:=r\$(PKG_REV)

PKG_SOURCE_PROTO:=svn

PKG_SOURCE_URL:=http://downloads.open-mesh.net/svn/batman/trunk/

It then becomes very easy to test development snapshots and branches of
your application.

2.1.2 Using another package manager

OpenWrt assumes you use IPKG as the default package manager, but extend-
ing the build system to generate RPMs, DEBs or other package system could
be easily achieved by tweaking the package templates in include/package*.mk.

2.2 Creating kernel modules packages

The OpenWrt distribution makes the distinction between two kind of kernel
modules, those coming along with the mainline kernel, and the others avail-
able as a separate project. We will see later that a common template is used
for both of them.

For kernel modules that are part of the mainline kernel source, the make-
files are located in package/kernel/modules/*.mk and they appear under the
section ”Kernel modules”

5

2.3 Adding support for a new target – OpenWrt

For external kernel modules, you can add them to the build system just like
if they were software packages by defining a KernelPackage section in the
package makefile.

After you have created your package/kernel/modules/<name>.mk, the new
kernel modules package will automatically show in the menu under ”Kernel
modules” next time you run ”make menuconfig” and if selected will be built
automatically the next time ”make” is run.

Provided that you gave the right KCONFIG variables, your kernel configura-
tion will be updated accordingly and the kernel module will be built only if
the corresponding module is selected. It is also possible to make the packaged
modules be loaded at boot time simply by defining it the Makefile.

2.3 Adding support for a new target

OpenWrt is very convenient when it comes to adding support for a new target
and requires few steps to be quickly operationnal. You will have to create
a new directory under target/linux/<my target> which will contain a
Makefile defining its build system features and the kernel version to use.

Adding custom patches against a particular kernel version can be done by
putting the patches into the target/linux/<my target>/ /patches direc-
tory wich an index number to let them be applied into the right order.

One of the interesting feature is that you can also put files that will be copied
to the Linux kernel build directory. For instance, if you are developing a new
file which should be into arch/mips/<my target>/ in the Linux kernel di-
rectory, just place this file in target/linux/<my target>/ /files/arch/mips/<my

target>/ file.c and it will be copied to the Linux kernel.

This feature is really interesting when you are developing because you prefer
editing C files instead of patches directly that will be creating C files.

2.3.1 Using quilt

OpenWrt natively supports quilt so that you can easily create and rebase your
existing patches without the need to develop scsript to patch the sources up
to a certain patch number, and then let you in with an editor.

Using quilt is very easy and allows you to edit the source files and generate
the differences to produce a new patch with the right patch level. This patch
is then automatically placed into the right location under the OpenWrt build

6

– OpenWrt

tree, such that you only need to issue the make component/subcomponent/compile

command to get it recompiled with your previously edited patch.

2.3.2 Building an external kernel tree

OpenWrt recently added support for building an external kernel build tree
wich allows you to use the cross-compiler created by the OpenWrt framework
with, for instance a GIT snapshot of a kernel tree. The only thing that you
need to configure is the path poinntig to your kernel directory.

This option is partcularly interesting for embedded developers who wish to
focus on testing their modifications against a git snapshot, will it be for later
submission into the mainline kernel or for internal use. Of course, quilt can
be used inside the external kernel tree along with the source content manager
tools.

3 Deploying OpenWrt

3.1 Supported root filesystems

Testing OpenWrt is really easy since you can flash your embedded device
using JFFS2, SquashFS, ext2/3, cpio images, and even run ramdisk enabled
kernel just by selecting an option in the configuration menu.

If the expected root filesystem does not exist, you can easily add it by tweak-
ing the image generation process of your particular target.

3.2 The Image builder

The Image builder is a deployment tool that already contains a compiled
toolchain and kernel such that you choose which packages and additionnal
files you want to include.

The packages should be provided under the IPKG format and the files can
simply be copied into a files/ directoy in the image builder root directory to
be get copied to the root filesystem.

This tool is really useful for people who wish to include binary files and
packages into an OpenWrt image.

7

3.3 The SDK – OpenWrt

3.3 The SDK

The Software Development kits also contains a binary toolchain, that al-
lows you to compile packages without the need to build your toolchain from
scratch.

This tool is particularly useful to test new package versions that are not yet
packaged by OpenWrt or any other external repository and upload them to
your embedded device for testing.

8

3.3 The SDK – OpenWrt

Getting further

You can reach the OpenWrt team using the following communication means.

IRC

You can chat with us on IRC using the Freenode Network and joining the
#openwrt or #openwrt-devel channels.

Mailing-lists

You can get access to the list of mailing-lists at https://lists.openwrt.org/. To
ask questions about the OpenWrt development please use the openwrt-devel
mailing list.

Web site

The OpenWrt website is at http://openwrt.org/ and has a news engine and
a forum to get in touch with other OpenWrts users and developers.

There is a trac interface on https://dev.openwrt.org/ which can be used to
monitor svn commits and browse the source repository.

9

